How do you use the limit definition to find the derivative of y=sqrt(-4x-2)y=√−4x−2?
1 Answer
See below.
Explanation:
The limit definition of the derivative is given by:
f(x)=lim_(h->0)(f(x+h)-f(x))/h
We have
Putting this into the above definition:
f(x)=lim_(h->0)(sqrt(-4(x+h)-2)-sqrt(-4x-2))/h
Now we attempt to simplify.
=>lim_(h->0)(sqrt(-4x-4h-2)-sqrt(-4x-2))/h
Clearly we must get
=>lim_(h->0)[((sqrt(-4x-4h-2)-sqrt(-4x-2))/h)*(sqrt(-4x-4h-2)+sqrt(-4x-2))/(sqrt(-4x-4h-2)+sqrt(-4x-2)))]
=>lim_(h->0)[((-4x-4h-2)-(-4x-2))/(h(sqrt(-4x-4h-2)+sqrt(-4x-2)))]
=>lim_(h->0)[-(4cancelh)/(cancelh(sqrt(-4x-4h-2)+sqrt(-4x-2)))]
=>lim_(h->0)[-(4)/(sqrt(-4x-4h-2)+sqrt(-4x-2))]
=>-(4)/(sqrt(-4x-4(0)-2)+sqrt(-4x-2))
=>-(4)/(sqrt(-4x-2)+sqrt(-4x-2))
=>-(4)/(2sqrt(-4x-2))
=>-(2)/(sqrt(-4x-2))
We can verify this answer by taking the derivative directly (using the chain rule):
y=sqrt(-4x-2)
=(-4x-2)^(1/2)
y'=1/2(-4x-2)^(-1/2)*(-4)
=-2/(sqrt(-4x-2))