How do you use the limit definition to find the derivative of y=sqrt(-4x-2)y=4x2?

1 Answer
Jul 11, 2017

See below.

Explanation:

The limit definition of the derivative is given by:

f(x)=lim_(h->0)(f(x+h)-f(x))/h

We have f(x)=y=sqrt(-4x-2)

Putting this into the above definition:

f(x)=lim_(h->0)(sqrt(-4(x+h)-2)-sqrt(-4x-2))/h

Now we attempt to simplify.

=>lim_(h->0)(sqrt(-4x-4h-2)-sqrt(-4x-2))/h

Clearly we must get h out of the denominator. We can do this by multiplying the numerator and denominator by the conjugate of the numerator.

=>lim_(h->0)[((sqrt(-4x-4h-2)-sqrt(-4x-2))/h)*(sqrt(-4x-4h-2)+sqrt(-4x-2))/(sqrt(-4x-4h-2)+sqrt(-4x-2)))]

=>lim_(h->0)[((-4x-4h-2)-(-4x-2))/(h(sqrt(-4x-4h-2)+sqrt(-4x-2)))]

=>lim_(h->0)[-(4cancelh)/(cancelh(sqrt(-4x-4h-2)+sqrt(-4x-2)))]

=>lim_(h->0)[-(4)/(sqrt(-4x-4h-2)+sqrt(-4x-2))]

=>-(4)/(sqrt(-4x-4(0)-2)+sqrt(-4x-2))

=>-(4)/(sqrt(-4x-2)+sqrt(-4x-2))

=>-(4)/(2sqrt(-4x-2))

=>-(2)/(sqrt(-4x-2))

We can verify this answer by taking the derivative directly (using the chain rule):

y=sqrt(-4x-2)

=(-4x-2)^(1/2)

y'=1/2(-4x-2)^(-1/2)*(-4)

=-2/(sqrt(-4x-2))