How do you use the limit definition to find the derivative of y=sqrt(-4x-4)y=4x4?

1 Answer
Sep 3, 2017

This is asking us to use the formula f'(x) = lim_(h->0) (f(x + h) - f(x))/h.

f'(x) = lim_(h->0)(sqrt(-4(x + h) -4) - sqrt(-4x - 4))/h

f'(x) = lim_(h->0) (sqrt(-4x -4h - 4) - sqrt(-4x - 4))/h

If we multiply the numerator and the denominator by the conjugate of the numerator, or sqrt(-4x - 4h - 4) + sqrt(-4x - 4), we get:

f'(x) = lim_(h->0) (sqrt(-4x -4h - 4) - sqrt(-4x - 4))/h ( (sqrt(-4x - 4h - 4) + sqrt(-4x - 4))/(sqrt(-4x - 4h -4) + sqrt(-4x- 4)))

f'(x) = lim_(h->0) (-4x - 4h - 4 - (-4x - 4))/(h(sqrt(-4x- 4h - 4) + sqrt(-4x - 4)))

f'(x) = lim_(h->0) (-4x - 4h - 4 + 4x + 4)/(h(sqrt(-4x - 4h -4) +sqrt(-4x - 4)))

f'(x) = lim_(h->0) (-4h)/(h(sqrt(-4x - 4h - 4) + sqrt(-4x -4))

f'(x) = lim_(h->0) -4/(sqrt(-4x - 4h - 4) + sqrt(-4x - 4))

f'(x) = -4/(sqrt(-4x - 4(0) - 4) + sqrt(-4x - 4)

f'(x) = -4/(2sqrt(-4x - 4))

f'(x) = -2/sqrt(-4x - 4)

If we try getting the derivative using the chain rule, just for verification, we get:

y' = (d/dx(-4x - 4))/(2sqrt(-4x - 4)

y' = -4/(2sqrt(-4x -4))

y' = -2/sqrt(-4x- 4)

As derived above.

Hopefully this helps!