How do you use the limit definition to find the derivative of #y=x+4#?
1 Answer
Dec 4, 2016
Explanation:
The definition of the derivative of
# f'(x)=lim_(h rarr 0) ( f(x+h)-f(x) ) / h #
So Let
# \ \ \ \ \ f(x+h) = (x+h) + 4 #
# :. f(x+h) = x+h + 4 #
And so the derivative of
# \ \ \ \ \ dy/dx = lim_(h rarr 0) ( (x+h + 4) - (x+4) ) / h #
# :. dy/dx = lim_(h rarr 0) ( x+h + 4 -x-4 ) / h #
# :. dy/dx = lim_(h rarr 0) ( h ) / h #
# :. dy/dx = 1 #