How do you use the limit definition to find the derivative of y=x+4?
1 Answer
Dec 4, 2016
Explanation:
The definition of the derivative of
f'(x)=lim_(h rarr 0) ( f(x+h)-f(x) ) / h
So Let
\ \ \ \ \ f(x+h) = (x+h) + 4
:. f(x+h) = x+h + 4
And so the derivative of
\ \ \ \ \ dy/dx = lim_(h rarr 0) ( (x+h + 4) - (x+4) ) / h
:. dy/dx = lim_(h rarr 0) ( x+h + 4 -x-4 ) / h
:. dy/dx = lim_(h rarr 0) ( h ) / h
:. dy/dx = 1