How do you use the properties of logarithms to expand log_3(sqrt(a-1)/9)log3(a19)?

1 Answer
Feb 8, 2017

1/2log_3 (a - 1) - 212log3(a1)2

Explanation:

Use the following laws of logarithms to solve this problem

loga^n = nlogalogan=nloga
log(a/b) = loga - logblog(ab)=logalogb
•log_an =logn/logalogan=lognloga
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

=log_3sqrt(a - 1) - log_3 9=log3a1log39

=log_3(a - 1)^(1/2) - log_3 9=log3(a1)12log39

= 1/2log_3(a - 1) - log9/log3=12log3(a1)log9log3

= 1/2log_3(a - 1) - log3^2/log3=12log3(a1)log32log3

=1/2log_3(a - 1) - (2log3)/log3=12log3(a1)2log3log3

=1/2log_3(a - 1) - 2=12log3(a1)2

Hopefully this helps!