How do you verify (1 + cos theta)(1 - cos theta) = sin^2 theta?

2 Answers
May 25, 2015

Use Pythagoras and the basic definitions of sine and cos
sin x = o/h
cos x = a/h
where o =the side opposite the angle x, a = the side adjacent to the angle x and h equals the hypotenuse of the right-angled triangle.

Pythagora states h^2 = a^2 + o^2
therefore 1 = a^2/h^2 + o^2/h^2
so 1 = cos^2(x) + sin^2 (x)
sin^2(x) = 1 - cos^2(x)
tthen sin^2(x) = (1 - cos(x))(1+cos(x))

May 26, 2015

(1+cos theta)(1-cos theta) = 1-cos^2 theta

= (sin^2 theta + cos^2 theta )- cos^2 theta

= sin^2 theta + (cos^2 theta - cos^2 theta)

= sin^2 theta