How do you verify #(1 - cosx) / (1 + cosx) = (cotx - cscx)²#?

1 Answer
Nov 1, 2015

Have a look:

Explanation:

Consider that:
#cot(x)=cos(x)/sin(x)#
and:
#csc(x)=1/sin(x)#
so in your case:
#(1-cos(x))/(1+cos(x))=(cos(x)/sin(x)-1/sin(x))^2#
#(1-cos(x))/(1+cos(x))=((cos(x)-1)/sin(x))^2#
#(1-cos(x))/(1+cos(x))=(cos(x)-1)^2/sin^2(x)#
but simplyfying and from:
#1=sin^2(x)+cos^2(x)#
#sin^2(x)=1-cos^2(x)#
#cancel((1-cos(x)))/(1+cos(x))=(cos(x)-1)^cancel(2)/(1-cos^2(x))#
also:
#(1-cos^2(x))=(1+cos(x))(1-cos(x))#
#1/(1+cos(x))=(cos(x)-1)/((1+cos(x))(1-cos(x)))#
and finally:
#1/cancel((1+cos(x)))=cancel((cos(x)-1))/(cancel((1+cos(x)))cancel((1-cos(x))))#
or:
#1=1#