How do you verify (1+cotalpha)^2-2cotalpha=1/((1-cosalpha)(1+cosalpha))?

2 Answers
Dec 6, 2016

Start by transforming all the terms into sine and cosine using the identity color(red)(cot theta = 1/tantheta = 1/(sintheta/costheta) = costheta/sintheta

(1 + cosalpha/sinalpha)^2 - (2cosalpha)/sinalpha = 1/((1 - cosalpha)(1 + cosalpha))

1 + (2cosalpha)/sinalpha + cos^2alpha/sin^2alpha - (2cosalpha)/sinalpha = 1/(1- cos^2alpha)

The (2cosalpha)/sinalpha's cancel each other out

1 + cos^2alpha/sin^2alpha = 1/(1 - cos^2alpha)

We use the identity color(red)(sin^2beta + cos^2beta =1-> sin^2beta = 1- cos^2beta at this point in the process.

(sin^2alpha + cos^2alpha)/sin^2alpha = 1/sin^2alpha

1/sin^2alpha = 1/sin^2alpha

LHS = RHS

Identity Proved!

Hopefully this helps!

Dec 6, 2016

LHS=(1+cotalpha)^2-2cotalpha

=1^2+cot^2alpha+2cotalpha-2cotalpha

=csc^2alpha

=1/sin^2alpha

=1/(1-cos^2alpha)

=1/((1-cosalpha)(1+cosalpha))=RHS

Proved