How do you verify 1/(secx+1 )= cot^2xsecx-cot^2x?

1 Answer
Mar 21, 2018

We seek to prove that:

1/(secx+1) -= cot^2x secx-cot^2x

Consider the RHS:

RHS = cot^2x secx-cot^2x

\ \ \ \ \ \ \ \ = cot^2x(secx-1)

\ \ \ \ \ \ \ \ = cot^2x(secx-1) (secx+1)/(secx+1)

\ \ \ \ \ \ \ \ = (1/tan^2x(sec^2x-1))/(secx+1)

\ \ \ \ \ \ \ \ = (1/tan^2x(tan^2x))/(secx+1)

\ \ \ \ \ \ \ \ = (1)/(secx+1)

\ \ \ \ \ \ \ \ = LHS \ \ \ \ QED