(1-sinx)/(1+sinx) = (secx-tanx)^21−sinx1+sinx=(secx−tanx)2
Left Side : =(1-sinx)/(1+sinx) =1−sinx1+sinx
=(1-sinx)/(1+sinx) * (1-sinx)/(1-sinx) =1−sinx1+sinx⋅1−sinx1−sinx
=(1-2sinx+sin^2x)/(1-sin^2x)=1−2sinx+sin2x1−sin2x
=(1-2sinx+sin^2x)/cos^2x=1−2sinx+sin2xcos2x
=1/cos^2x-(2sinx)/cos^2x+sin^2x/cos^2x=1cos2x−2sinxcos2x+sin2xcos2x
=1/cos^2x-2 * 1/cosx sinx/cosx+sin^2x/cos^2x=1cos2x−2⋅1cosxsinxcosx+sin2xcos2x
=sec^2x-2secxtanx+tan^2x=sec2x−2secxtanx+tan2x
=(secx-tanx)(secx-tanx)=(secx−tanx)(secx−tanx)
=(secx-tanx)^2=(secx−tanx)2
:.= Right Side