How do you verify (1+sinx+cosx)^2 = 2(1+sinx)(1+cosx)?

1 Answer
Jun 15, 2015

You will be squaring a quantity that contains both sinx and cosx, so you will need the identity sin^2x+cos^2x = 1. I would start by multiplying both of these out.

(1+sinx+cosx)^2 = 1 + sinx + cosx + sinx + sin^2x + sinxcosx + cosx + sinxcosx + cos^2x

= 1 + 2sinx + 2cosx + sin^2x + cos^2x + 2sinxcosx

while

2(1+sinx)(1+cosx) = 2(1+cosx+sinx+sinxcosx) = 2+2cosx+2sinx+2sinxcosx

Compare:
1 + sin^2x + cos^2x + cancel(2sinx + 2cosx + 2sinxcosx) = 2+cancel(2cosx+2sinx+2sinxcosx)

1 + sin^2x + cos^2x = 2

1 + 1 = 2

2 = 2

They're equal.