How do you verify (1-tan^2x)/(1-cot^2x) = 1-sec^2x1tan2x1cot2x=1sec2x?

1 Answer
Oct 3, 2016

see below

Explanation:

(1-tan^x)/(1-cot^2x) = 1-sec^2x1tanx1cot2x=1sec2x

Left Side=(1-tan^2x)/(1-cot^2x)=1tan2x1cot2x

=(1-tan^2x)/(1-(1/tan^2x))=1tan2x1(1tan2x)

=(1-tan^2x)/((tan^2x-1)/tan^2x)=1tan2xtan2x1tan2x

=(1-tan^2x) * (tan^2x/(tan^2x-1)) =(1tan2x)(tan2xtan2x1)

=(1-tan^2x) * (tan^2x/-(1-tan^2x)) =(1tan2x)(tan2x(1tan2x))

=-tan^2x=tan2x

=-(sec^2x-1)=(sec2x1)

=-sec^2x+1=sec2x+1

=1-sec^2x=1sec2x

== Right Side