How do you verify (1-tan^2x) / (1+tan^2x) = 1-2sin^2? Trigonometry Trigonometric Identities and Equations Proving Identities 1 Answer Deepak G. Jul 24, 2016 L.H.S=R.H.S Explanation: L.H.S = (1-tan^2x)/(1+tan^2x) =(1-sin^2x/cos^2x)/(1+sin^2x/cos^2x =((cos^2x-sin^2x)/cos^2x)/((cos^2x+sin^2x)/cos^2x) =(cos^2x-sin^2x)/(cos^2x+sin^2x) =(cos^2x-sin^2x)/1 ; Since cos^2x+sin^2x=1;cos^2x=1-sin^2x =cos^2x-sin^2x =1-sin^2x-sin^2x =1-2sin^2x =R.H.S Answer link Related questions What does it mean to prove a trigonometric identity? How do you prove \csc \theta \times \tan \theta = \sec \theta? How do you prove (1-\cos^2 x)(1+\cot^2 x) = 1? How do you show that 2 \sin x \cos x = \sin 2x? is true for (5pi)/6? How do you prove that sec xcot x = csc x? How do you prove that cos 2x(1 + tan 2x) = 1? How do you prove that (2sinx)/[secx(cos4x-sin4x)]=tan2x? How do you verify the identity: -cotx =(sin3x+sinx)/(cos3x-cosx)? How do you prove that (tanx+cosx)/(1+sinx)=secx? How do you prove the identity (sinx - cosx)/(sinx + cosx) = (2sin^2x-1)/(1+2sinxcosx)? See all questions in Proving Identities Impact of this question 36165 views around the world You can reuse this answer Creative Commons License