How do you verify (1-tan^2x) / (1+tan^2x) = 1-2sin^2?

1 Answer
Jul 24, 2016

L.H.S=R.H.S

Explanation:

L.H.S = (1-tan^2x)/(1+tan^2x)
=(1-sin^2x/cos^2x)/(1+sin^2x/cos^2x
=((cos^2x-sin^2x)/cos^2x)/((cos^2x+sin^2x)/cos^2x)
=(cos^2x-sin^2x)/(cos^2x+sin^2x)
=(cos^2x-sin^2x)/1 ; Since cos^2x+sin^2x=1;cos^2x=1-sin^2x
=cos^2x-sin^2x
=1-sin^2x-sin^2x
=1-2sin^2x
=R.H.S