How do you verify 1 + tanxtan2x = sec2x1+tanxtan2x=sec2x?

1 Answer
Jun 6, 2015

(1 + sin x.sin 2x)/(cos x.cos 2x) =1+sinx.sin2xcosx.cos2x=

= (cos x.cos 2x + sin x.sin 2x)/(cos x.cos 2x) ==cosx.cos2x+sinx.sin2xcosx.cos2x=

= cos (2x - x)/(cos x.cos 2x) = 1/cos (2x)=cos(2xx)cosx.cos2x=1cos(2x) = sec 2x