How do you verify (2cos2x1)2cos4xsin4x?

1 Answer
Apr 30, 2018

cos2x

Explanation:

Knowing that:
cos2x=cos2xsin2x=2cos2x1
and sin2x+cos2x=1

Start:
(2cos2x1)2cos4xsin4x=

(cos2x)2(cos2x+sin2x)(cos2xsin2x)=

(cos2x)2(1)(cos2xsin2x)=

(cos2x)2cos2xsin2x=

(cos2x)2cos2x=

cos2x

End