How do you verify (2cos^2x-1)^2/(cos^4x-sin^4x)=1-2sin^2x(2cos2x1)2cos4xsin4x=12sin2x?

1 Answer
Apr 30, 2018

Cosine double angle identity:
cos(2x)=cos^2(x)-sin^2(x)cos(2x)=cos2(x)sin2(x)

Next, substitute rearranged sin^2(x)+cos^2(x)=1sin2(x)+cos2(x)=1

Substitute sin^2(x) = 1-cos^2(x)sin2(x)=1cos2(x):
2cos^2(x)-12cos2(x)1
Sub cos^2(x)cos2(x):
1-2sin^2(x)12sin2(x)

((cos(2x))^2)/(cos^4(x)-sin^4(x)) = cos(2x)(cos(2x))2cos4(x)sin4(x)=cos(2x)

The denominator sin^4(x)-cos^4(x)sin4(x)cos4(x) is a difference of squares:
(sin^2(x)-cos^2(x))(sin^2(x)+cos^2(x))(sin2(x)cos2(x))(sin2(x)+cos2(x))
=(cos(2x))*1=(cos(2x))1

Therefore:

cos^2(2x)/cos(2x) = cos(2x)cos2(2x)cos(2x)=cos(2x)

Factors cancel, leaving:
cos(2x) = cos(2x)cos(2x)=cos(2x)