How do you verify #(2cot2x)/(cosx-sinx)=cscx+secx#? Trigonometry Trigonometric Identities and Equations Proving Identities 1 Answer P dilip_k Nov 15, 2016 #LHS=(2cot2x)/(cosx-sinx)# #=(2cos2x)/(sin2x(cosx-sinx))# #=(cancel2(cos^2x-sin^2x))/(cancel2sinxcosx(cosx-sinx))# #=((cancel(cosx-sinx))(cosx+sinx))/(sinxcosx(cancel(cosx-sinx)))# #=cosx/(sinxcosx)+sinx/(sinxcosx)# #=cscx+secx# verified Not valid when #cosx=sinx " "i.e.x=npi+pi/4# #n in ZZ# Answer link Related questions What does it mean to prove a trigonometric identity? How do you prove #\csc \theta \times \tan \theta = \sec \theta#? How do you prove #(1-\cos^2 x)(1+\cot^2 x) = 1#? How do you show that #2 \sin x \cos x = \sin 2x#? is true for #(5pi)/6#? How do you prove that #sec xcot x = csc x#? How do you prove that #cos 2x(1 + tan 2x) = 1#? How do you prove that #(2sinx)/[secx(cos4x-sin4x)]=tan2x#? How do you verify the identity: #-cotx =(sin3x+sinx)/(cos3x-cosx)#? How do you prove that #(tanx+cosx)/(1+sinx)=secx#? How do you prove the identity #(sinx - cosx)/(sinx + cosx) = (2sin^2x-1)/(1+2sinxcosx)#? See all questions in Proving Identities Impact of this question 3449 views around the world You can reuse this answer Creative Commons License