How do you verify (2tan(x/2)) / (1+tan^2(x/2)) = sin x?

1 Answer
Mar 9, 2018

See Below

Explanation:

LHS : (2tan(x/2))/(1+tan^2(x/2))

=((2sin(x/2))/cos(x/2))/sec^2(x/2)-> use the property 1+tan^2x=sec^2x

=((2sin(x/2))/cos(x/2))/(1/cos ^2(x/2))

=(2sin(x/2))/cos(x/2) * cos ^2(x/2)/1

=(2sin(x/2))/cancelcos(x/2) * cos ^cancel2(x/2)/1

=2sin(x/2)cos(x/2)

=sin2(x/2)->use the property sin2x=2sinxcosx

=sincancel2(x/cancel2)

=sinx

=RHS