How do you verify 8sin²xcos²x = 1-cos(4x)?

2 Answers
Mar 30, 2018

See below:

Explanation:

We know

sin(2x) = 2 sin x cos x

and

cos(2x) = cos^2 x - sin^2 x = 1-2sin^2 x

So

8 sin^2 x cos^2 x = 2(4sin^2 x cos^2 x) = 2(2sin x cos x)^2
qquad = 2sin^2(2x) = 1-cos(2 times 2x) = 1-cos(4x)

Mar 30, 2018

Please see below.

Explanation:

We have:

8sin^2cos^2x = 1 - cos(2x + 2x)

8sin^2xcos^2x = 1- (cos(2x)cos(2x) - sin(2x)sin(2x))

8sin^2xcos^2x = 1 - (cos^2(2x) - sin^2(2x))

8sin^2xcos^2x= 1 - cos^2(2x) + sin^2(2x)

8sin^2xcos^2x = sin^2(2x)+ sin^2(2x)

8sin^2xcos^2x= 2sin^2(2x)

Now recall that sin(2x) = 2sinxcosx, therefore sin^2(2x) = 4sin^2xcos^2x.

8sin^2xcos^2x = 2(4sin^2xcos^2x)

8sin^2xcos^2x= 8sin^2xcos^2x

LHS = RHS

As required.

Hopefully this helps!