How do you verify #8sin²xcos²x = 1-cos(4x)#?
2 Answers
Mar 30, 2018
See below:
Explanation:
We know
and
So
Mar 30, 2018
Please see below.
Explanation:
We have:
#8sin^2cos^2x = 1 - cos(2x + 2x)#
#8sin^2xcos^2x = 1- (cos(2x)cos(2x) - sin(2x)sin(2x))#
#8sin^2xcos^2x = 1 - (cos^2(2x) - sin^2(2x))#
#8sin^2xcos^2x= 1 - cos^2(2x) + sin^2(2x)#
#8sin^2xcos^2x = sin^2(2x)+ sin^2(2x)#
#8sin^2xcos^2x= 2sin^2(2x)#
Now recall that
#8sin^2xcos^2x = 2(4sin^2xcos^2x)#
#8sin^2xcos^2x= 8sin^2xcos^2x#
#LHS = RHS#
As required.
Hopefully this helps!