How do you verify cos^2(x)-sin^2(x)=1-2sin^2(x)cos2(x)sin2(x)=12sin2(x)?

1 Answer
Jun 11, 2018

Below

Explanation:

RTP: cos^2x-sin^2x=1-2sin^2xcos2xsin2x=12sin2x

LHS:
cos^2x-sin^2xcos2xsin2x

Recall: cos^2x+sin^2x=1cos2x+sin2x=1 so cos^2x=1-sin^2xcos2x=1sin2x
= (1-sin^2x)-sin^2x(1sin2x)sin2x

=1-sin^2x-sin^2x1sin2xsin2x

= 1-2sin^2x12sin2x

= RHS

Therefore: cos^2x-sin^2x=1-2sin^2xcos2xsin2x=12sin2x