How do you verify cos^2x + cos^2(pi/2 - x) = 1cos2x+cos2(π2x)=1?

1 Answer
May 2, 2016

Using the identities

  • cos(x-pi/2) = sin(x)cos(xπ2)=sin(x)
  • cos(-x) = cos(x)cos(x)=cos(x)
  • cos^2(x)+sin^2(x) = 1cos2(x)+sin2(x)=1

we have:

cos^2(x)+cos^2(pi/2-x) = cos^2(x) + cos^2(-(x-pi/2))cos2(x)+cos2(π2x)=cos2(x)+cos2((xπ2))

=cos^2(x)+cos^2(x-pi/2)=cos2(x)+cos2(xπ2)

=cos^2(x)+sin^2(x)=cos2(x)+sin2(x)

=1=1