We know that,
color(blue)((1)1/costheta=sectheta(1)1cosθ=secθ
color(red)((2)sin^2theta+cos^2theta=1(2)sin2θ+cos2θ=1
color(red)((3)sec^2theta-tan^2theta=1(3)sec2θ−tan2θ=1
We have to verify :
cos^2x+tan^2x-color(blue)(1/cos^2x)+sin^2x=0cos2x+tan2x−1cos2x+sin2x=0
We take left hand side :
LHS=cos^2x+tan^2x-color(blue)(1/cos^2x)+sin^2x...tocolor(blue)(Apply(1)
LHS=cos^2x+tan^2x-color(blue)(sec^2x)+sin^2x
LHS=cos^2x+sin^2x-sec^2x+tan^2x
LHS={color(red)(cos^2x+sin^2x)}-{color(red)(sec^2x-tan^2x)}
LHS=1-1...tocolor(red)(Apply(2) and (3)
LHS=0
LHS=RHS