How do you verify cos^2x + tan^2x - 1 / cos^2x + sin^2x = 0cos2x+tan2x1cos2x+sin2x=0?

2 Answers
May 28, 2018

Please see below.

Explanation:

We know that,

color(blue)((1)1/costheta=sectheta(1)1cosθ=secθ

color(red)((2)sin^2theta+cos^2theta=1(2)sin2θ+cos2θ=1

color(red)((3)sec^2theta-tan^2theta=1(3)sec2θtan2θ=1

We have to verify :

cos^2x+tan^2x-color(blue)(1/cos^2x)+sin^2x=0cos2x+tan2x1cos2x+sin2x=0

We take left hand side :

LHS=cos^2x+tan^2x-color(blue)(1/cos^2x)+sin^2x...tocolor(blue)(Apply(1)

LHS=cos^2x+tan^2x-color(blue)(sec^2x)+sin^2x

LHS=cos^2x+sin^2x-sec^2x+tan^2x

LHS={color(red)(cos^2x+sin^2x)}-{color(red)(sec^2x-tan^2x)}

LHS=1-1...tocolor(red)(Apply(2) and (3)

LHS=0

LHS=RHS

May 28, 2018

color(green)(=> 0 = R H S

Explanation:

cos^2 x + tan^2 x - (1/cos^2x) + sin^2 x

cos ^2 x + sin ^2 x + tan ^2 x - (1/cos^2 x), rearranging terms

cos^2 x + sin ^2 = 1, identity

sec x -= 1/cos x, identity

:. cancel(cos^2 x + sin^2 x)^color(red)(1) + tan^2 x - sec^2 x

1 + tan^2 x = sec ^2x, identity

=> cancel(1 + tan^2 x )- cancel(sec ^2 x )= 0

color(green)(=> R H S