We know that,
#color(blue)((1)1/costheta=sectheta#
#color(red)((2)sin^2theta+cos^2theta=1#
#color(red)((3)sec^2theta-tan^2theta=1#
We have to verify :
#cos^2x+tan^2x-color(blue)(1/cos^2x)+sin^2x=0#
We take left hand side :
#LHS=cos^2x+tan^2x-color(blue)(1/cos^2x)+sin^2x...tocolor(blue)(Apply(1)#
#LHS=cos^2x+tan^2x-color(blue)(sec^2x)+sin^2x#
#LHS=cos^2x+sin^2x-sec^2x+tan^2x#
#LHS={color(red)(cos^2x+sin^2x)}-{color(red)(sec^2x-tan^2x)}#
#LHS=1-1...tocolor(red)(Apply(2) and (3)#
#LHS=0#
#LHS=RHS#