How do you verify cos(x) / (1-sin(x)) = sec(x) + tan(x)cos(x)1sin(x)=sec(x)+tan(x)?

2 Answers
Jul 26, 2018

Please see the explanation below

Explanation:

We need

sin^2x+cos^2x=1sin2x+cos2x=1

secx=1/cosxsecx=1cosx

tanx=sinx/cosxtanx=sinxcosx

The LHS=cosx/(1-sinx)LHS=cosx1sinx

=cosx/(1-sinx)*(1+sinx)/(1+sinx)=cosx1sinx1+sinx1+sinx

=(cosx(1+sinx))/(1-sin^2x)=cosx(1+sinx)1sin2x

=(cosx(1+sinx))/(cos^2x)=cosx(1+sinx)cos2x

=(1+sinx)/cosx=1+sinxcosx

=1/cosx+sinx/cosx=1cosx+sinxcosx

=secx+tanx=secx+tanx

=LHS=LHS

QEDQED

Jul 26, 2018

Please see below.

Explanation:

Here,

LHS=cosx/(1-sinx)LHS=cosx1sinx

"Multiplynumerator and denominator by cosx" Multiplynumerator and denominator by cosx

LHS=(cosx*cosx)/(cosx(1-sinx))LHS=cosxcosxcosx(1sinx)

color(white)(LHS)=cos^2x/(cosx(1-sinx))LHS=cos2xcosx(1sinx)

color(white)(LHS)=(1-sin^2x)/(cosx(1-sinx))to[becausesin^2theta+cos^2theta=1]

color(white)(LHS)=((1-sinx)(1+sinx))/(cosx(1-sinx))

color(white)(LHS)=(1+sinx)/cosx

color(white)(LHS)=1/cosx+sinx/cosx

color(white)(LHS)=secx+tanx

LHS=RHS