How do you verify cosx/(1-tanx) + sinx/(1-cotx) = sinx + cosx?

1 Answer
Mar 25, 2018

LHS=cosx/(1-tanx) + sinx/(1-cotx)

=cos^2x/(cosx(1-tanx)) + sin^2x/(sinx(1-cotx))

=cos^2x/(cosx-sinx) + sin^2x/(sinx-cosx)

=cos^2x/(cosx-sinx) - sin^2x/(cosx-sinx)

=(cos^2x - sin^2x)/(cosx-sinx)

=((cosx+sinx)(cosx-sinx))/(cosx-sinx)

= sinx + cosx=RHS