How do you verify [cot^2 x - tan^2 x)/[(cot x + tan x)^2] = 2(cos^2) x - 1?

1 Answer
Jun 11, 2016

As shown below

Explanation:

LHS

=(cot^2x - tan^2x)/(cotx + tanx)^2

=((cotx - tanx)cancel((cotx + tanx)))/(cotx + tanx)^cancel2

=(cotx - tanx)/(cotx + tanx)

Multiplying both Numerator and denominator by tanx we get

LHS

=(tanx xx(cotx - tanx))/(tanx xx(cotx + tanx)

=(tanx xxcotx - tan^2x)/(tanx xxcotx + tan^2x)

=(1 - tan^2x)/(1 + tan^2x) " " "putting "tanx xxcotx=1

=(1 - sin^2x/cos^2x)/(1 + sin^2x/cos^2x) " " "putting "tanx =sinx/cosx

=(1 - sin^2x/cos^2x)/(1 + sin^2x/cos^2x)

=(cos^2x-sin^2x)/(cos^2x+sin^2x)

=((cos^2x-(1-cos^2x))/(cos^2x+sin^2x))

=(2cos^2x-1)/1=(2cos^2x-1)=RHS