How do you verify -cot(x/2) = (sin2x + sinx) / (cos2x - cosx)cot(x2)=sin2x+sinxcos2xcosx?

1 Answer
Nov 2, 2015

Verify trig expression
-cot (x/2) = (sin 2x + sin x)/(cos 2x - cos x)cot(x2)=sin2x+sinxcos2xcosx

Explanation:

Use the trig identities to transform the right side:
sin 2x = sin x.cos x
cos 2x = 2cos^2 x - 1cos2x=2cos2x1.
Transform the right side:
RS = (sin 2x + sin x)/(cos 2x - cos x) = (sin x(2cos x + 1))/(2cos^2 x - cos x - 1sin2x+sinxcos2xcosx=sinx(2cosx+1)2cos2xcosx1 =

Factor the trinomial (2cos^2 x - cos x - 1).(2cos2xcosx1).
Since (a + b + c = 0), use the Shortcut, the 2 factors are (cos x - 1) and (2cos x + 1). Finally,

RS = (sin x(2cos x + 1))/((cos x - 1)(2cos x + 1)) = (sin x)/(cos x - 1)RS=sinx(2cosx+1)(cosx1)(2cosx+1)=sinxcosx1
Since:
sin x = 2sin (x/2).cos (x/2) andsinx=2sin(x2).cos(x2)and
(cos x - 1) = -2sin^2 (x/2)(cosx1)=2sin2(x2), therefor
RS = (2sin (x/2)(cos x/2))/(-2sin^2 (x/2)) = RS=2sin(x2)(cosx2)2sin2(x2)=
= - cos (x/2)/(sin (x/2)) = -cot x/2=cos(x2)sin(x2)=cotx2