How do you verify (cotxsec2x)+(cotxcsc2x)=cotx?

2 Answers
Nov 3, 2015

Verify trig expression.
(cotxsec2x)+(cotxcsc2x)=cotx

Explanation:

First term of left side:
(cosxsinx1cos2x)=cos3xsinx (1)

Second term of left side:
cosxsinx1sin2x=cosx.sin2xsinx (2).

Add (1) and (2)
(cos3xsinx)+cosxsin2xsinx=
=cosxsinx(cos2x+sin2x)=cosxsinx=cotx

Nov 3, 2015

Determination is done by following method.

Explanation:

LHS= cotxsec2x+cotxcsc2x

a=cotx(1sec2x+1csc2x)

a=cotx(cos2x+sin2x)

a=cotx

a=RHS