How do you verify (csc x+sec x)/(sin x+ cos x)=cot x+tan x?

1 Answer
Apr 10, 2016

For an identity like this, we have to be clear with the following identities.

Explanation:

The reciprocal identities

csctheta = 1/sintheta

sectheta = 1/costheta

cottheta = 1/tantheta

The quotient identities:

tantheta = sin theta/costheta

cottheta = costheta/sintheta

Applying all these identities, on both sides, we get:

(1/sinx + 1/cosx)/(sinx + cosx) = cosx/sinx + sinx/cosx

((cosx + sinx)/(cosxsinx))/(sinx + cosx) = cosx/sinx + sinx/cosx

1/(sinx + cosx) xx (cosx + sinx)/(cosxsinx) = cosx/sinx + sinx/cosx

1/(cosxsinx)= (cos^2x + sin^2x)/(sinxcosx)

Applying the pythagorean identity sin^2x + cos^2x = 1 on the right side, we get:

1/(cosxsinx) = 1/(sinxcosx)

Hopefully this helps!