How do you verify sec^2(x)+csc^2(x)=(sec(x)csc(x))^2?

1 Answer
Jul 1, 2015

Use the inverse forms of sec and csc; apply rule sin^2+cos^2 = 1 and perform standard algebraic operations.

Explanation:

sec^2(x)+csc^2(x)
color(white)("XXXX")=1/(cos^2(x)) + 1/(sin^2(x))

color(white)("XXXX")=(sin^2(x)+cos^2(x))/(cos^2(x)*sin^2(x))

color(white)("XXXX")=1/(cos^2(x)*sin^2(x))

color(white)("XXXX")=1/cos^2(x)*1/sin^2(x)

color(white)("XXXX")= sec^2(x) * csc^2(x)

color(white)("XXXX")= (sec(x)csc(x))^2