How do you verify [sin^3(B) + cos^3(B)] / [sin(B) + cos(B)] = 1-sin(B)cos(B)? Trigonometry Trigonometric Identities and Equations Proving Identities 1 Answer ProfLayton Apr 22, 2016 Proof below Explanation: Expansion of a^3+b^3=(a+b)(a^2-ab+b^2), and we can use this: (sin^3B+cos^3B)/(sinB+cosB)=((sinB+cosB)(sin^2B-sinBcosB+cos^2B))/(sinB+cosB) =sin^2B-sinBcosB+cos^2B =sin^2B+cos^2B-sinBcosB (identity: sin^2x+cos^2x=1) =1-sinBcosB Answer link Related questions What does it mean to prove a trigonometric identity? How do you prove \csc \theta \times \tan \theta = \sec \theta? How do you prove (1-\cos^2 x)(1+\cot^2 x) = 1? How do you show that 2 \sin x \cos x = \sin 2x? is true for (5pi)/6? How do you prove that sec xcot x = csc x? How do you prove that cos 2x(1 + tan 2x) = 1? How do you prove that (2sinx)/[secx(cos4x-sin4x)]=tan2x? How do you verify the identity: -cotx =(sin3x+sinx)/(cos3x-cosx)? How do you prove that (tanx+cosx)/(1+sinx)=secx? How do you prove the identity (sinx - cosx)/(sinx + cosx) = (2sin^2x-1)/(1+2sinxcosx)? See all questions in Proving Identities Impact of this question 5087 views around the world You can reuse this answer Creative Commons License