How do you verify (sin B + cos B)(sin B - cos B)= 2 sin^2B - 1?

2 Answers
Aug 3, 2015

Have a look:

Explanation:

We can multiply the brackets and get:
sin^2Bcancel(-sinBcosB)cancel(+sinBcosB)-cos^2B=2sin^2B-1
sin^2B-cos^2B=2sin^2B-1
But: sin^2B+cos^2B=1
So:
sin^2B-cos^2B=2sin^2B-sin^2B-cos^2B
And:
sin^2B-2sin^2B+sin^2B=cos^2B-cos^2B
0=0

Aug 3, 2015

Verify (sin B - cos B)(sin B + cos B) = 2sin^2 B - 1

Explanation:

sin^2 B - cos^2 B = 2sin^2 B - 1

- (cos^2B - sin^2 B) = - (1 - 2sin^2 B)

- cos (2B) = - cos (2B)

Reminder: cos 2a = 1 - 2sin^2a = cos^2 a - sin^2 a