How do you verify (sin(x)+cos(x))^2=1+sin^2(x)?

1 Answer
Aug 4, 2015

I think it is not true.

Explanation:

You can write it as:
sin^2(x)+2sin(x)cos(x)+cos^2(x)=sin^2(x)+cos^2(x)+sin^2(x)
where you used the fact that:
1=sin^2(x)+cos^2(x)
so:
cancel(sin^2(x))+2sin(x)cos(x)+cancel(cos^2(x))=cancel(sin^2(x))+cancel(cos^2(x))+sin^2(x)
and:
2sin(x)cos(x)=sin^2(x) Not true