How do you verify (sin x+cos x)^2=1+sin2x(sinx+cosx)2=1+sin2x?

1 Answer
Mar 8, 2016

This result follows almost directly from the following:

  • (a+b)^2 = a^2+2ab + b^2(a+b)2=a2+2ab+b2
  • sin^2(x) + cos^2(x) = 1sin2(x)+cos2(x)=1
  • sin(2x) = 2sin(x)cos(x)sin(2x)=2sin(x)cos(x)

With these, we have

(sin(x)+cos(x))^2 = sin^2(x) + 2sin(x)cos(x)+cos^2(x)(sin(x)+cos(x))2=sin2(x)+2sin(x)cos(x)+cos2(x)

=(sin^2(x)+cos^2(x))+2sin(x)cos(x)=(sin2(x)+cos2(x))+2sin(x)cos(x)

=1 + sin(2x)=1+sin(2x)