How do you verify (sin x)(tan x cos x - cot x cos x) = 1 - 2 cos2x(sinx)(tanxcosxcotxcosx)=12cos2x?

2 Answers
May 1, 2018

Pretty sure the question is (sinx)(tanxcosx-cotxcos x)=1-2cos^2x(sinx)(tanxcosxcotxcosx)=12cos2x ,or else it will be not provable.

Explanation:

Some basic knowledge to begin with:
1. sin^2x+cos^2x=1sin2x+cos2x=1
2. tanx=sinx/cosxtanx=sinxcosx
3. cotx=cosx/sinxcotx=cosxsinx

Let's start from the left hand side
(sinx)(tanxcosx-cotxcos x)(sinx)(tanxcosxcotxcosx)

=sinxtanxcosx-sinxcotxcosx=sinxtanxcosxsinxcotxcosx

=sinx(sinx/cosx)cosx-sinx(cosx/sinx)cosx=sinx(sinxcosx)cosxsinx(cosxsinx)cosx

=sin^2x-cos^2x=sin2xcos2x

=sin^2x+cos^2x-2cos^2x=sin2x+cos2x2cos2x

=1-2cos^2x=12cos2x

May 1, 2018

"see explanation"see explanation

Explanation:

"using the "color(blue)"trigonometric identities"using the trigonometric identities

•color(white)(x)tanx=sinx/cosx" and "cotx=cosx/sinxxtanx=sinxcosx and cotx=cosxsinx

•color(white)(x)sin^2x+cos^2x=1xsin2x+cos2x=1

rArrsin^2x=1-cos^2xsin2x=1cos2x

"consider the left side"consider the left side

"distributing the parenthesis"distributing the parenthesis

sinx xxsinx/cancel(cosx)xxcancel(cosx)-cancel(sinx)xxcosx/cancel(sinx)xxcosx

=sin^2x-cos^2x

=(1-cos^2x)-cos^2x

=1-2cos^2x=" right side "rArr"verified"