How do you verify (sintheta-1)(tantheta+sectheta)=-costheta(sinθ−1)(tanθ+secθ)=−cosθ? Trigonometry Trigonometric Identities and Equations Proving Identities 1 Answer Bdub Nov 14, 2016 see below Explanation: (sintheta-1)(tantheta+sectheta)=-costheta(sinθ−1)(tanθ+secθ)=−cosθ Left Side : =(sintheta-1)(tantheta+sectheta)=(sinθ−1)(tanθ+secθ) =(sintheta-1)(sintheta/costheta+1/costheta)=(sinθ−1)(sinθcosθ+1cosθ) =(sintheta-1)((sintheta+1)/costheta)=(sinθ−1)(sinθ+1cosθ) =(sin^2theta-1)/costheta=sin2θ−1cosθ =(-(1-sin^2theta))/costheta=−(1−sin2θ)cosθ =(-cos^2theta)/costheta=−cos2θcosθ =(-cos^cancel2theta)/cancelcostheta =-cos theta :.= Right Side Answer link Related questions What does it mean to prove a trigonometric identity? How do you prove \csc \theta \times \tan \theta = \sec \theta? How do you prove (1-\cos^2 x)(1+\cot^2 x) = 1? How do you show that 2 \sin x \cos x = \sin 2x? is true for (5pi)/6? How do you prove that sec xcot x = csc x? How do you prove that cos 2x(1 + tan 2x) = 1? How do you prove that (2sinx)/[secx(cos4x-sin4x)]=tan2x? How do you verify the identity: -cotx =(sin3x+sinx)/(cos3x-cosx)? How do you prove that (tanx+cosx)/(1+sinx)=secx? How do you prove the identity (sinx - cosx)/(sinx + cosx) = (2sin^2x-1)/(1+2sinxcosx)? See all questions in Proving Identities Impact of this question 1909 views around the world You can reuse this answer Creative Commons License