How do you verify (sintheta-1)(tantheta+sectheta)=-costheta(sinθ1)(tanθ+secθ)=cosθ?

1 Answer
Nov 14, 2016

see below

Explanation:

(sintheta-1)(tantheta+sectheta)=-costheta(sinθ1)(tanθ+secθ)=cosθ

Left Side : =(sintheta-1)(tantheta+sectheta)=(sinθ1)(tanθ+secθ)

=(sintheta-1)(sintheta/costheta+1/costheta)=(sinθ1)(sinθcosθ+1cosθ)

=(sintheta-1)((sintheta+1)/costheta)=(sinθ1)(sinθ+1cosθ)

=(sin^2theta-1)/costheta=sin2θ1cosθ

=(-(1-sin^2theta))/costheta=(1sin2θ)cosθ

=(-cos^2theta)/costheta=cos2θcosθ

=(-cos^cancel2theta)/cancelcostheta

=-cos theta

:.= Right Side