How do you verify (tan^3(x) - 1) / (tan(x) - 1) = sec^2(x) + tan(x)? Trigonometry Trigonometric Identities and Equations Proving Identities 1 Answer Abhinav T. Jun 29, 2016 LHS = (tan^3(x)-1)/(tan(x)-1) "Since " a^3-b^3=(a-b)*(a^2+a*b+b^2), we may write the LHS = (cancel((tan(x)-1))*(tan^2(x)+tan(x)+1))/cancel((tan(x)-1)) =cancel(tan^2(x))+tan(x)+Sec^2(x)-cancel(tan^2(x)) ["Since " Sec^2(x)-tan^2(x) = 1] =Sec^2(x)+tan(x) = RHS Proved. Answer link Related questions What does it mean to prove a trigonometric identity? How do you prove \csc \theta \times \tan \theta = \sec \theta? How do you prove (1-\cos^2 x)(1+\cot^2 x) = 1? How do you show that 2 \sin x \cos x = \sin 2x? is true for (5pi)/6? How do you prove that sec xcot x = csc x? How do you prove that cos 2x(1 + tan 2x) = 1? How do you prove that (2sinx)/[secx(cos4x-sin4x)]=tan2x? How do you verify the identity: -cotx =(sin3x+sinx)/(cos3x-cosx)? How do you prove that (tanx+cosx)/(1+sinx)=secx? How do you prove the identity (sinx - cosx)/(sinx + cosx) = (2sin^2x-1)/(1+2sinxcosx)? See all questions in Proving Identities Impact of this question 13919 views around the world You can reuse this answer Creative Commons License