How do you verify (tan^3(x) - 1) / (tan(x) - 1) = sec^2(x) + tan(x)?

1 Answer
Jun 29, 2016

LHS =
(tan^3(x)-1)/(tan(x)-1)
"Since " a^3-b^3=(a-b)*(a^2+a*b+b^2), we may write the LHS
= (cancel((tan(x)-1))*(tan^2(x)+tan(x)+1))/cancel((tan(x)-1))

=cancel(tan^2(x))+tan(x)+Sec^2(x)-cancel(tan^2(x)) ["Since " Sec^2(x)-tan^2(x) = 1]
=Sec^2(x)+tan(x) = RHS Proved.