How do you verify (tanx) /(1-cotx) + (cotx) /(1-tanx) = 1 +secx cscx?

2 Answers
Nov 26, 2015

Carefully.

Explanation:

I find that its easier to convert directly to sine and cosine. I recognize the trig identities better.

(sinX/cosX)/(1-cosX/sinX) + (cosX/sinX)/(1-sinX/cosX)

There are too many fractions. Turn the 1's into sinX"/"sinX and cosX"/"cosX, then combine the denominators into fractions over sinX and cosX.

(sinX/cosX)/((sinX-cosX)/sinX) + (cosX/sinX)/((cosX-sinX)/cosX)

Now we can get rid of these fractions of fractions by flipping the denominators and multiplying them by the numerators.

sin^2X/(cosX(sinX-cosX)) + cos^2X/(sinX(cosX-sinX))

Cross multiply the denominators to get a common denominator.

(sin^3X(cosX-sinX) + cos^3(sinX-cosX))/(sinXcosX(sinX-cosX)(cosX-sinX))

Multiply through the parenthesis.

(sin^3XcosX-sin^4X - cos^4X+sinXcos^3X)/(sinXcosX(-sin^2X+2sinXcosX - cos^2X))

Pull a factor of sinXcosX out of two of the terms in the numerator. There is also a -(sin^2X+cos^2X) in the denominator, which by the Pythagorean theorem is equal to -1.

((sin^2X + cos^2X)sinXcosX -sin^4X - cos^4X)/(sinXcosX(2sinXcosX-1))

We can use the Pythagorean theorem again on the top. Also, pull out a -1 from the ""^4 terms in the numerator.

(sinXcosX -(sin^4X + cos^4X))/(sinXcosX(2sinXcosX-1))

Split the sin^4X term into two sin^2X terms. Then we can use the Pythagorean theorem, sin^2X = 1-cos^2X to replace one of the sin^2 terms. Do a similar action with the cosX^4 term.

(sinXcosX -(sin^2Xsin^2X+cos^2Xcos^2X))/(sinXcosX(2sinXcosX-1))

(sinXcosX -(sin^2X(1-cos^2X)+cos^2X(1-sin^2X)))/(sinXcosX(2sinXcosX-1))

Multiply through the terms in the top parenthesis.

(sinXcosX -(sin^2X-2sin^2Xcos^2X +cos^2X))/(sinXcosX(2sinXcosX-1))

Once again Pythagorean theorem out the sin^2X and cos^2X terms.

(sinXcosX -(1-2sin^2Xcos^2X))/(sinXcosX(2sinXcosX-1))

Multiply the -1 through the parenthesis in the numerator.

( sinXcosX+2sin^2Xcos^2X-1)/(sinXcosX(2sinXcosX-1))

Pull out a factor of sinXcosX from two of the terms in the numerator.

( sinXcosX(1+2sinXcosX)-1)/(sinXcosX(2sinXcosX-1))

Adding and subtracting a 1 inside the parenthesis is the same as adding 0.

( sinXcosX(1+2sinXcosX+(1-1))-1)/(sinXcosX(2sinXcosX-1))

Combine the two +1 terms in the parenthesis.

( sinXcosX(2sinXcosX-1 +2)-1)/(sinXcosX(2sinXcosX-1))

Now pull the 2 out. Remember to multiply by sinXcosX.

( sinXcosX(2sinXcosX-1) + 2sinXcosX-1)/(sinXcosX(2sinXcosX-1))

Finally we have a term in the numerator that is the same as the denominator. Split the addition terms in the numerator to get;

(sinXcosX(2sinXcosX-1))/(sinXcosX(2sinXcosX-1)) + (2sinXcosX-1)/(sinXcosX(2sinXcosX-1))

The first term simplifies to 1 and in the second term the (2sinXcosX-1)s cancel out.

1+1/(sinXcosX)

Now convert to secXand cscX

1+secXcscX

Sep 22, 2016

LHS=tanx/(1 - cotx) + cotx/(1 - tanx)

=tan^2x/(tanx(1 - cotx)) + cotx/(1 - tanx)

=cotx/(1 - tanx) +tan^2x/(tanx- tanxcotx)

=cotx/(1 - tanx) -tan^2x/(1- tanx)

=(1/tanx-tan^2x)/(1 - tanx)

=(1-tan^3x)/(tanx(1 - tanx))

=(cancel((1-tanx))(1+tanx+tan^2x))/(tanxcancel((1 - tanx))

=(tanx+sec^2x)/(tanx

=tanx/tanx+sec^2x/tanx

=1+secx*secx *(cosx/sinx)

=1+secx*(1/sinx)

=1+secx*cscx=RHS