How do you verify the identity (1+sinalpha)(1-sinalpha)=cos^2alpha(1+sinα)(1sinα)=cos2α?

1 Answer
Jan 4, 2017

see below

Explanation:

color(red)((1+sinalpha)(1-sinalpha))=cos^2alpha(1+sinα)(1sinα)=cos2α

apply FOIL to the red bit. you get: 1 - sin alpha + sin alpha - sin^2 alpha = 1 - sin^2 alpha1sinα+sinαsin2α=1sin2α

then you have the Pythagorean identity to finish it off :)

1 - sin^2 alpha = cos^2 alpha implies sin^2 alpha + cos^2 alpha = 1 1sin2α=cos2αsin2α+cos2α=1