How do you verify the identity #(1+sintheta)/costheta+costheta/(1+sintheta)=2sectheta#?

1 Answer
Feb 6, 2017

see below

Explanation:

Left Hand Side:

#(1+sin theta)/cos theta + cos theta/(1+sin theta)=((1+sin theta)(1+sin theta)+cos theta cos theta)/(cos theta(1+sin theta))#

#=(1+2sin theta + sin^2 theta + cos ^2 theta)/(cos theta(1+sin theta))#

#=(1+2sin theta + sin^2 theta + 1-sin^2 theta)/(cos theta(1+sin theta))#

#=(1+2sin theta + cancel(sin^2 theta) + 1-cancel(sin^2 theta))/(cos theta(1+sin theta))#

#=(2+2sin theta)/(cos theta(1+sin theta))#

#=(2(1+sin theta))/(cos theta(1+sin theta))#

#=(2 (cancel (1+sin theta)))/(cos theta cancel((1+sin theta)))#

#=2/cos theta#

#=2*1/cos theta#

#=2sec theta#

#:.=# Right Hand Side