How do you verify the identity (2tanx)/(1+tan^2x) =sin2x? Trigonometry Trigonometric Identities and Equations Proving Identities 1 Answer Gió Apr 30, 2015 Use the fact that: tanx=sinx/cosx and sin2x=2sinxcosx So: 2sinx/cosx*1/(1+sin^x/cos^2x)=2sinxcosx 2sinx/cosx*cos^2x/(cos^2x+sin^2x)=2sinxcosx 2sinx/cancel(cosx)*cos^cancel(2)x/(cos^2x+sin^2x)=2sinxcosx But sin^2x+cos^2x=1 So: 2sinxcosx=2sinxcosx Answer link Related questions What does it mean to prove a trigonometric identity? How do you prove \csc \theta \times \tan \theta = \sec \theta? How do you prove (1-\cos^2 x)(1+\cot^2 x) = 1? How do you show that 2 \sin x \cos x = \sin 2x? is true for (5pi)/6? How do you prove that sec xcot x = csc x? How do you prove that cos 2x(1 + tan 2x) = 1? How do you prove that (2sinx)/[secx(cos4x-sin4x)]=tan2x? How do you verify the identity: -cotx =(sin3x+sinx)/(cos3x-cosx)? How do you prove that (tanx+cosx)/(1+sinx)=secx? How do you prove the identity (sinx - cosx)/(sinx + cosx) = (2sin^2x-1)/(1+2sinxcosx)? See all questions in Proving Identities Impact of this question 43237 views around the world You can reuse this answer Creative Commons License