How do you verify the identity cot(pi/2-x)=tanx? Trigonometry Trigonometric Identities and Equations Proving Identities 1 Answer Bdub Feb 6, 2017 see below Explanation: Left Hand Side: cot(pi/2 -x)=cos(pi/2 -x)/sin(pi/2 -x) Use the formulas cos(A-B)=cosAcosB+sinAsinB and sin(A-B)=sinAcosB-cosAsinB =(cos (pi/2)cosx+sin(pi/2)sinx)/(sin(pi/2)cosx-cos(pi/2)sinx =(0*cosx+1*sinx)/(1*cosx-0*sinx) =sinx/cosx =tanx :. = Right Hand Side Answer link Related questions What does it mean to prove a trigonometric identity? How do you prove \csc \theta \times \tan \theta = \sec \theta? How do you prove (1-\cos^2 x)(1+\cot^2 x) = 1? How do you show that 2 \sin x \cos x = \sin 2x? is true for (5pi)/6? How do you prove that sec xcot x = csc x? How do you prove that cos 2x(1 + tan 2x) = 1? How do you prove that (2sinx)/[secx(cos4x-sin4x)]=tan2x? How do you verify the identity: -cotx =(sin3x+sinx)/(cos3x-cosx)? How do you prove that (tanx+cosx)/(1+sinx)=secx? How do you prove the identity (sinx - cosx)/(sinx + cosx) = (2sin^2x-1)/(1+2sinxcosx)? See all questions in Proving Identities Impact of this question 42676 views around the world You can reuse this answer Creative Commons License