How do you verify the identity (csc x - sin x)(sec x - cos x)(tan x + cot x) = 0(cscxsinx)(secxcosx)(tanx+cotx)=0?

2 Answers
Apr 23, 2015

I am not sure that is equal to zero....I got 11!
enter image source here
Have a look.

Apr 23, 2015

WARNING: This may not be the simplest way!
(csc - sin)(sec - cos)(tan+cot)(cscsin)(seccos)(tan+cot)
Let ss represent sin(x)sin(x)
cc represent cos(x)cos(x)
and tt represent tan(x)tan(x)

(csc - sin)(sec - cos)(tan+cot)(cscsin)(seccos)(tan+cot)
becomes
(1/s - s)(1/c-c)(t+1/t)(1ss)(1cc)(t+1t)

=(1/(sc)-t - 1/t+sc)*(t+1/t)=(1sct1t+sc)(t+1t)

((xx,|1/(sc),,-t,,-1/t,,+sc),( - , - , - , - , - , - , - , - - ),(1/t,|1/(sct),,-1,,-1/t^2,,+(sc)/t),(+t,|t/(sc),,-t^2,,-1,,sct) )

Replacing t with s/c

we get
1/(s^2) - 1 -c^2/s^2 +c^2 +1/c^2 -s^2/c^2 -1 +s^2

=(1-s^2)/(c^2) -2 +(c^2+s^2) +(1-c^2)/s^2

= 1