How do you verify the identity sec^2(x/2)= (2secx + 2)/(secx + 2 + cosx)?

1 Answer
Jul 22, 2015

Required to prove : sec^2(x/2)= (2secx + 2)/(secx + 2 + cosx)

"Right Hand Side"= (2secx + 2)/(secx + 2 + cosx)

Remember that secx=1/cosx

=> (2*1/cosx + 2)/(1/cosx + 2 + cosx)

Now, multiply top and bottom by cosx

=>(cosx xx(2*1/cosx + 2))/(cosx xx(1/cosx + 2 + cosx))

=>(2+2cosx)/(1+2cosx+cos^2x)

Factorize the bottom,

=>(2(1+cosx))/(1+cosx)^2

=>2/(1+cosx)

Recall the identity : cos2x=2cos^2x-1
=>1+cos2x=2cos^2x

Similarly : 1+cosx=2cos^2(x/2)

=>"Right Hand Side"=2/(2cos^2(x/2))=1/cos^2(x/2)=color(blue)(sec^2(x/2)) = "Left Hand Side"

As Required