Right Hand Side:
(tan x+tan y)/(1-tanxtany)=(sinx/cosx +siny/cosy)/(1-sinx/cosx siny/cosy)tanx+tany1−tanxtany=sinxcosx+sinycosy1−sinxcosxsinycosy
=((sinxcosy+cosx sin y)/(cosxcosy))/(1-(sinxsiny)/(cosxcosy)=sinxcosy+cosxsinycosxcosy1−sinxsinycosxcosy
=((sinxcosy+cosx siny)/(cosxcosy))/((cosxcosy-sinxsiny)/(cosxcosy)=sinxcosy+cosxsinycosxcosycosxcosy−sinxsinycosxcosy
=(sinxcosy+cosxsiny)/(cosxcosy) *(cosxcosy)/(cosxcosy-sinxsiny) =sinxcosy+cosxsinycosxcosy⋅cosxcosycosxcosy−sinxsiny
=(sinxcosy+cosx sin y)/cancel(cosxcosy) *cancel(cosxcosy)/(cosxcosy-sinxsiny)
=(sinxcosy+cosxsiny)/(cosxcosy-sinxsiny)
:.=Left Hand Side