How do you verify the identity (sinxcosy+cosxsiny)/(cosxcosy-sinxsiny)=(tanx+tany)/(1-tanxtany)sinxcosy+cosxsinycosxcosysinxsiny=tanx+tany1tanxtany?

1 Answer
Feb 15, 2017

see below

Explanation:

Right Hand Side:

(tan x+tan y)/(1-tanxtany)=(sinx/cosx +siny/cosy)/(1-sinx/cosx siny/cosy)tanx+tany1tanxtany=sinxcosx+sinycosy1sinxcosxsinycosy

=((sinxcosy+cosx sin y)/(cosxcosy))/(1-(sinxsiny)/(cosxcosy)=sinxcosy+cosxsinycosxcosy1sinxsinycosxcosy

=((sinxcosy+cosx siny)/(cosxcosy))/((cosxcosy-sinxsiny)/(cosxcosy)=sinxcosy+cosxsinycosxcosycosxcosysinxsinycosxcosy

=(sinxcosy+cosxsiny)/(cosxcosy) *(cosxcosy)/(cosxcosy-sinxsiny) =sinxcosy+cosxsinycosxcosycosxcosycosxcosysinxsiny

=(sinxcosy+cosx sin y)/cancel(cosxcosy) *cancel(cosxcosy)/(cosxcosy-sinxsiny)

=(sinxcosy+cosxsiny)/(cosxcosy-sinxsiny)

:.=Left Hand Side