How do you verify the identity: tan (x + pi/2) = -cot xtan(x+π2)=cotx?

2 Answers
Jun 9, 2015

Verify tan (x + pi/2) = - cot x

Explanation:

On the trig unit circle, the value AT = tan x rotates counterclockwise an arc of pi/2, and becomes BU = - cot x

Jun 24, 2016

Note that tan(x+pi/2)=sin(x+pi/2)/cos(x+pi/2)tan(x+π2)=sin(x+π2)cos(x+π2).

For the numerator, use sin(A+B)=sin(A)cos(B)+cos(A)sin(B)sin(A+B)=sin(A)cos(B)+cos(A)sin(B):

sin(x+pi/2)=sin(x)cos(pi/2)+cos(x)sin(pi/2)sin(x+π2)=sin(x)cos(π2)+cos(x)sin(π2)

=sin(x)*0+cos(x)*1=sin(x)0+cos(x)1

=cos(x)=cos(x)

In the denominator, use cos(A+B)=cos(A)cos(B)-sin(A)sin(B)cos(A+B)=cos(A)cos(B)sin(A)sin(B):

cos(x+pi/2)=cos(x)cos(pi/2)-sin(x)sin(pi/2)cos(x+π2)=cos(x)cos(π2)sin(x)sin(π2)

=cos(x)*0-sin(x)*1=cos(x)0sin(x)1

=-sin(x)=sin(x)

Thus, we see that

tan(x+pi/2)=sin(x+pi/2)/cos(x+pi/2)=cos(x)/(-sin(x))=-cot(x)tan(x+π2)=sin(x+π2)cos(x+π2)=cos(x)sin(x)=cot(x)

square