How do you verify the identity (tanx+secx)(1-sinx)=cosx?

1 Answer
Aug 26, 2016

See below.

Explanation:

Use the following identities to simplify the left-hand side:

tanbeta = sinbeta/cosbeta

secbeta = 1/cosbeta

Start the simplification process:

(sinx/cosx + 1/cosx)(1 - sinx) = cosx

((sinx + 1)/(cosx))(1 - sinx) = cosx

(1 - sin^2x)/cosx = cosx

Now, rearrange the pythagorean identity sin^2beta + cos^2beta = 1 for cos^2beta to get cos^2beta = 1- sin^2beta. Applying this to our problem:

cos^2x/cosx = cosx

((cosx)(cosx))/cosx = cosx

(cancel(cosx)cosx)/cancel(cosx) = cosx

cosx = cosx

Identity proved!!

Hopefully this helps!