How do you write 25y^2 + 9x^2 - 50y - 54x = 11925y2+9x2−50y−54x=119 in standard form?
1 Answer
Consider the tow sub-expressions from the left side of this equation:
-
Terms involving
color(red)(y)y
color(red)(25y^2-50y)25y2−50y
color(red)(= 25(y^2-2y))=25(y2−2y)
color(red)(=25(y^2-2y+1) -25)=25(y2−2y+1)−25
color(red)(=5^2(y-1)^2 -25)=52(y−1)2−25 -
Terms involving
color(blue)(x)x
color(blue)(9x^2-54x)9x2−54x
color(blue)(=9(x^2-6x+(-3)^2) -81)=9(x2−6x+(−3)2)−81
color(blue)(=3^2(x-3)^2 -81)=32(x−3)2−81
or
or
some variant of this depending upon your local definition of "standard form" for an ellipse.