How do you write 25y^2 + 9x^2 - 50y - 54x = 11925y2+9x250y54x=119 in standard form?

1 Answer
May 3, 2015

25y^2+9x^2-50y-54x = 11925y2+9x250y54x=119

Consider the tow sub-expressions from the left side of this equation:

  1. Terms involving color(red)(y)y
    color(red)(25y^2-50y)25y250y
    color(red)(= 25(y^2-2y))=25(y22y)
    color(red)(=25(y^2-2y+1) -25)=25(y22y+1)25
    color(red)(=5^2(y-1)^2 -25)=52(y1)225

  2. Terms involving color(blue)(x)x
    color(blue)(9x^2-54x)9x254x
    color(blue)(=9(x^2-6x+(-3)^2) -81)=9(x26x+(3)2)81
    color(blue)(=3^2(x-3)^2 -81)=32(x3)281

25y^2+9x^2-50y-54x = 11925y2+9x250y54x=119
25y^2-50y +9x^2-54x = 11925y250y+9x254x=119
=color(red)(5^2(y-1)^2 -25) + color(blue)(3^2(x-3)^2-81) = 119=52(y1)225+32(x3)281=119
=5^2(y-1)^2+3^2(x-3)^2 = 225=52(y1)2+32(x3)2=225
or
=(25y-25)^2+(9x-27)^2= 15^2=(25y25)2+(9x27)2=152
or
some variant of this depending upon your local definition of "standard form" for an ellipse.