How do you write f(x) = -4x^2 - 16x + 3 in vertex form?

1 Answer
Jun 18, 2017

f(x)=-4(x+2)^2+19

Explanation:

"for the standard form of a parabola " y=ax^2+bx+c

"the x-coordinate of the vertex is " x_(color(red)"vertex")=-b/(2a)

y=-4x^2-16x+3" is in standard form"

"with " a=-4,b=-16,c=3

rArrx_(color(red)"vertex")=-(-16)/(-8)=-2

"substitute into f(x) for y-coordinate"

rArry_(color(red)"vertex")=-4(-2)^2-16(-2)+3=19

rArrcolor(magenta)"vertex "= (-2,19)

"the equation of a parabola in "color(blue)"vertex form" is.

• y=a(x-h)^2+k

where ( h , k ) are the coordinates of the vertex and a is a constant.

"here " (h,k)=(-2,19)" and "a=-4

rArry=-4(x+2)^2+19larrcolor(red)" in vertex form"