Standard form y=ax^2+bx+cy=ax2+bx+c
Vertex form y=a(x+b/(2a))^2+k+cy=a(x+b2a)2+k+c
Where a(b/(2a))^2+k=0a(b2a)2+k=0
kk neutralizes the error introduced
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Step 1 " "-1(x^(color(magenta)(2))-4x)+0 −1(x2−4x)+0
Step 2" "-1(x-4x)^(color(magenta)(2))+color(magenta)(k)+0 −1(x−4x)2+k+0
Step 3" "-1(x-4)^2+k" "larr" removed the "x" from "4x −1(x−4)2+k ← removed the x from 4x
Step 4" "-1(x-2)^2+k" "larr" halved the 4" −1(x−2)2+k ← halved the 4
Step 4" "k+[-1(-2)^2] =0 -> k=+4 k+[−1(−2)2]=0→k=+4
Step 5" "-(x-2)^2+4 −(x−2)2+4