How do you write F(x) = -x^2+4xF(x)=x2+4x in vertex form?

1 Answer
May 20, 2016

y=-(x-2)^2+4 -> g(x) =-(x-2)^2+4y=(x2)2+4g(x)=(x2)2+4

Explanation:

Standard form y=ax^2+bx+cy=ax2+bx+c
Vertex form y=a(x+b/(2a))^2+k+cy=a(x+b2a)2+k+c

Where a(b/(2a))^2+k=0a(b2a)2+k=0

kk neutralizes the error introduced
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Step 1 " "-1(x^(color(magenta)(2))-4x)+0 1(x24x)+0

Step 2" "-1(x-4x)^(color(magenta)(2))+color(magenta)(k)+0 1(x4x)2+k+0

Step 3" "-1(x-4)^2+k" "larr" removed the "x" from "4x 1(x4)2+k removed the x from 4x

Step 4" "-1(x-2)^2+k" "larr" halved the 4" 1(x2)2+k halved the 4

Step 4" "k+[-1(-2)^2] =0 -> k=+4 k+[1(2)2]=0k=+4

Step 5" "-(x-2)^2+4 (x2)2+4

Tony B