How do you write #f(x)= -x^2+6x-13# into vertex form?
1 Answer
Aug 11, 2017
Explanation:
#"the equation of a parabola in "color(blue)"vertex form"# is.
#color(red)(bar(ul(|color(white)(2/2)color(black)(y=a(x-h)^2+k)color(white)(2/2)|)))#
where ( h , k ) are the coordinates of the vertex and a is a constant.
#"using the method of "color(blue)"completing the square"#
#f(x)=-(x^2-6x+13)#
#color(white)(f(x))=-(x^2-6x+9-9+13)#
#color(white)(f(x))=-((x-3)^2+4)#
#color(white)(f(x))=-(x-3)^2-4larrcolor(red)" in vertex form"#