How do you write #f(x)= -x^2+6x-13# into vertex form?

1 Answer
Aug 11, 2017

#f(x)=-(x-3)^2-4#

Explanation:

#"the equation of a parabola in "color(blue)"vertex form"# is.

#color(red)(bar(ul(|color(white)(2/2)color(black)(y=a(x-h)^2+k)color(white)(2/2)|)))#
where ( h , k ) are the coordinates of the vertex and a is a constant.

#"using the method of "color(blue)"completing the square"#

#f(x)=-(x^2-6x+13)#

#color(white)(f(x))=-(x^2-6x+9-9+13)#

#color(white)(f(x))=-((x-3)^2+4)#

#color(white)(f(x))=-(x-3)^2-4larrcolor(red)" in vertex form"#