How do you write the partial fraction decomposition of the rational expression 1/((x+6)(x^2+3))1(x+6)(x2+3)?

1 Answer
Mar 25, 2018

1/((x+6)(x^2+3)) = 1/(39(x+6))-(x-6)/(39(x^2+3))1(x+6)(x2+3)=139(x+6)x639(x2+3)

Explanation:

Given:

1/((x+6)(x^2+3))1(x+6)(x2+3)

Note that x^2+3x2+3 has no linear factors with real coefficients.

So, assuming we want a decomposition with real coefficients, it takes the form:

1/((x+6)(x^2+3)) = A/(x+6)+(Bx+C)/(x^2+3)1(x+6)(x2+3)=Ax+6+Bx+Cx2+3

Multiplying both sides by (x+6)(x^2+3)(x+6)(x2+3) this becomes:

1 = A(x^2+3)+(Bx+C)(x+6)1=A(x2+3)+(Bx+C)(x+6)

color(white)(1) = (A+B)x^2+(6B+C)x+(3A+6C)1=(A+B)x2+(6B+C)x+(3A+6C)

Putting x=-6x=6 we get:

1 = A((color(blue)(-6))^2+3) = 39A1=A((6)2+3)=39A

So:

A=1/39A=139

Then from the coefficient of x^2x2, we have:

A+B = 0A+B=0

So:

B = -A = -1/39B=A=139

From the constant term we have:

1 = 3A+6C1=3A+6C

Hence:

C = 1/6(1-3A) = 1/6(1-1/13) = 2/13 = 6/39C=16(13A)=16(1113)=213=639

So:

1/((x+6)(x^2+3)) = 1/(39(x+6))-(x-6)/(39(x^2+3))1(x+6)(x2+3)=139(x+6)x639(x2+3)